
Pattern Recognition : Popular Methods
Deep Neural Nets, Ensemble Learning and SVM

Neuron network growth over 24 hours

In 2014, the group of Gabriel Popescu at Illinois U. visualized a
growing net of baby neurons using spatial light interference
microscopy (SLIM). Ref : http://light.ece.illinois.edu/
wp-content/uploads/2014/03/Mir_SRep_2014.pdf
Video : https://youtu.be/KjKsU_4s0nE

http://light.ece.illinois.edu/wp-content/uploads/2014/03/Mir_SRep_2014.pdf
http://light.ece.illinois.edu/wp-content/uploads/2014/03/Mir_SRep_2014.pdf
https://youtu.be/KjKsU_4s0nE

Child neuron network growth

Re : Museum de Toulouse http://www.museum.toulouse.fr/-/
connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-

http://www.museum.toulouse.fr/-/connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-
http://www.museum.toulouse.fr/-/connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-

Neuron

Brain : More than 1010 neurons
Synaptic plasticity (connexion among neurons) - Neurogenesis
(including adults) : new neurons/connexions created

Network of Artificial Neurons (multilayer perceptron, MLP)

From the Artificial Neuron model to Neural Networks 1/2

I Artificial Neuronl : Mc Cullogh et Pitts, 1943
I Learning the Artificial Neuron model : the Perceptron by

Rosenblatt, 1957
I Minsky and Papert : limitation of the Perceptron, 1959
I Learning a multi-layer perceptron by gradient backpropagation,

Y. Le Cun, 1985, Hinton and Sejnowski, 1986.
I Multi-Layer Perceptron = a universal approximant, Hornik et

al. 1991
I Convolutional networks, 1995, Y. Le Cun and Y. Bengio
I Between 1995 et 2008, the domain is flat (non convexity,

computationally demanding, no theory)

From the Artificial Neuron model to Neural Networks 1/2

I Democratization of GPU’s (graphical processing units) 2005
I Large image databases : Imagenet, Fei-Fei et al. 2008 (now

much more than 106 images)
I Deeper and deeper neural networks, learned by means of

massive databases
I Initialization with unuspervised learning (autoencoder)
I Word2vec (Mikolov et al. 2013)
I Dropout (Srivastava et al. 2014)

Artificial Neuron

I activation function (e.g. sign)
I weight vector and bias (intercept)

f (x) = g(wT x + b) (1)

Choose g differentiable preferably (cf gradient optimization
techniques)

Activation function for the Artificial Neuron

For instance :

One also uses hyperbolic tangent tanh (values in the range
(−1, 1)).

Limitation of the Artificial Neuron model

Limited to linearly separable data :

Add a processing intermediary layer

Now, compute :
f (x) = g(Φ(x)Tw + b)

Feature map or latent representation.
Flexibility of neural networks : the feature map Φ is learned
from the training data.

Universal Approximation

In 1991, Hornik et al. prove that MLP’s with one hidden layer and
p + 1 input is dense in the space of real valued continuous functions
on Rp. A MLP with one hidden layer is a universal approximant.

Some other flexible/rich classes of decision functions (more next
week !) :

I Linear regressor : NO
I SVM with a universal kernel, e.g. Gaussian kernel : YES
I Random Forests : YES
I Boosting stumps : YES

Universal Approximation

In 1991, Hornik et al. prove that MLP’s with one hidden layer and
p + 1 input is dense in the space of real valued continuous functions
on Rp. A MLP with one hidden layer is a universal approximant.
Some other flexible/rich classes of decision functions (more next
week !) :

I Linear regressor : NO
I SVM with a universal kernel, e.g. Gaussian kernel : YES
I Random Forests : YES
I Boosting stumps : YES

Example of a multi-layer neural network "feedforward"

Consider a MLP with an output layer of size K = 1, a hidden layer
of size M + 1, an input vector of size p + 1

Class of fonctions Hmlp = {hmlp : Rp+1 → Y}
for the regression problem (continuous output Y)

hMLP(x) =
M∑
j=0

w
(2)
j zj (2)

zj = tanh(aj) (3)

aj =

p∑
i=0

w
(1)
ji xi (4)

About choosing the activation function

Hyperbolic tangent is chosen here as activation function,
differentiable.

h(a) = tanh(a) =
ea − e−a

ea + e−a
(5)

h′(a) = 1− h(a)2 (6)

This choice is appealing from a computational perspective since the
derivative can be expressed in terms of h(a). A similar property
holds for the sigmoid :

g(a) =
1

1 + exp(−1
2a)

.

Architecture of a multi-layer neural network "feedforward"

I The single ouptut of a regressor MLP predicts a real value
I For classification with K classes, one chooses K outputs with

the sigmoid function or the softmax function
softmax(z) = (softmax1(z), . . . , softmaxK (z)), with

softmaxi (z) =
exp(zi)∑

j=1K exp(zj)

I For a multi-output regression with K outputs, take K linear
outputs for the architecture

Architecture of a multi-layer neural network "feedforward"

Consider a MLP with an output layer of size K = 1, a hidden layer
of size M + 1, an input vector of size p + 1 for a regression task

Class of functions Hmlp = {hmlp : Rp+1 → Y}

hc(x) = g(
M∑
j=0

w
(2)
jc zj) (7)

zj = g(aj) (8)

aj =

p∑
i=0

w
(1)
ji xi (9)

with g(t) = 1
1+exp(−1/2t) .

Learning from Training Data

L(W ;S) =
N∑

n=1

`(h(xn), yn))

Regression :
`(h(xn), yn) = (h(xn)− yn)2

Classification (maximize the likelihood) : Interpret
fc(x) = p(y = c |x) (multiple outputs : one may use the softmax
function)

`(h(x), y) = − log fy (x)

To be notice : L is non convex and has many local minima

I Our best : find a good local minimum
I For this reason MLP had been abandoned for a long time,

SVM/SVR were preferred, easier models to optimize

Optimization

Gradient backpropagation

I When applying gradient descent, the error is backpropagated
through all the layers, starting from the last one,

I One uses the chain rule for differentiation :
∂L(W)

∂w
(1)
ji

= ∂L(W)
∂aj

∂aj

∂w
(1)
ji

to modify the weights of the hidden layer.

I Once all the modifications are computed, the network is
updated.

I Backpropagation can be applied locally or globally

Gradient backpropagation

References :
Y. LeCun : Une procédure d’apprentissage pour réseau à seuil
asymmétrique (a Learning Scheme for Asymmetric Threshold
Networks), Proceedings of Cognitiva 85, 599-604, Paris, France,
1985.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986)
Learning representations by back-propagating errors. Nature, 323,
533–536.

Ordinary Gradient Descent

Let C(θ) be a function :

I The values θ such that ∂C(θ)
∂θ = 0 correspond to minima or

maxima of C .
I When C is strictly convex in θ, gradient descent permits to

build iteratively a sequence of values converging to the
(unique) solution.

I In addition, even if C is not strictly convex, it can be used to
find a ’good’ local minimum approximately.

Idea : refine the value θ iteratively by : θt+1 ← θt − ηt ∂C(θ)∂θ
After each update, the gradient is re-evaluated at the new
point/value and used next to refine the value using the same
formula

Global gradient descent

C(θ) =
∑N

n=1 cn(θ)

1. E = 1000 ;
2. ε= small
3. θ0 initial value ; t = 0 ;
4. While (E > ε)

I θt+1 ← θt − ηt
∑N

n=1
∂cn(θ

t)
∂θt

I compute E = L(θt+1)

5. Output the current value of θ

Choosing ηk

Theorem :
If the series (

∑
k ηk) diverges and if (

∑
k η

2
k) converges, the

gradient descent converges to a local minimum.

Local and stochastic gradient descent

C(θ) =
∑N

n=1 cn(θ)

1. E = 1000 ;
2. ε= small value
3. θ0 initial value ; t = 0 ;
4. nbcycle = 0
5. While (E ≥ ε) and (nbcycle < 500)

I nbcycle = nbcycle + 1
I for ` = 1 to N

I Draw uniformly at random an index n ∈ {1, . . . ,N}
I θt+1 ← θt − ηt ∂cn(θ

t)
∂θt

I compute E = L(θt+1)

Stochastic gradient descent with constant minibatch size

C(θ) =
∑N

n=1 cn(θ)

1. E = 1000 ;
2. ε= small value
3. θ0 initial value ; t = 0 ;
4. nbcycle = 0
5. While (E ≥ ε) and (nbcycle < 500)

I nbcycle = nbcycle + 1
I Draw uniformly at random M times an index n ∈ {1, . . . ,N}
I θt+1 ← θt − ηt ∂cM (θt)

∂θt

I compute E = L(θt+1)

Gradient backpropagation (1/4)

Apply gradient descent to the weights of layers 1 and 2 (reduced
here to a single output unit).
Let ` = 1

2(h(x)− y)2

Calculation for a single data point , local algorithm
Gradient w.r.t. output weights :

∂`

∂w
(2)
j

=
∂`

∂h(x)

∂h(x)

∂w
(2)
j

(10)

Gradient w.r.t. the hidden layer :

∂`

∂w
(1)
ji

=
∂`

∂h(x)

∂h(x)

∂w
(1)
ji

(11)

Local backpropagation (2/4) : calculations

Calculation for a single data point , local algorithm
Gradient w.r.t. output weights :

∂`

∂w
(2)
j

=
∂`

∂h(x)

∂h(x)

∂w
(2)
j

(12)

∂`

∂h(x)
= h(x)− y (13)

∂h(x)

∂w
(2)
j

=
∂g(w

(2)
j zj +

∑
k 6=j w

(2)
k zk)

∂w
(2)
j

(14)

(15)

Local backpropagation (3/4) : calculations

Calculation for a single data point , local algorithm
Gradient w.r.t. output weights :

∂`

∂w
(1)
ji

=
∂`

∂h(x)

∂h(x)

∂w
(1)
ji

(16)

∂h(x)

∂w
(1)
ji

= w
(2)
j

∂g(
∑

k wjkxk)

∂w
(1)
ji

(17)

∂h(x)

∂w
(1)
ji

= (1− g(
∑
k

wjkxk)2)w
(2)
j xi (18)

Local backpropagation (4/4) : calculations

Local descent at xn drawn uniformly at random :

1. At xn, compute h(xn)

2. Compute the gradients : ∂`n

∂w
(2),t
j

puis ∂`n

∂w
(1),t
ji

3. Correct the weights by means of the pre-calculated gradients :
I Correct the layer (1) :
I For j = 0 to M :

I w
(1),t+1
j ← w

(1),t
j − ηt ∂`n

∂w
(1),t
j

I Correct layer 2 : here single output neuron
I w (2),t+1 ← w (2),t − ηt ∂`n

∂w (2),t

Regularization and early stopping

I Early Stopping
I A first regularisation heuristic has been proposed in the 90’s :

stop a priori early the learning procedure to avoid overfitting :
avoid getting close to a minimum !

I Regularization
I Define :
L(W ,Sapp =

∑
n `(h(xn), yn) + λ2||w (2),∗||2 + λ1||w (1),∗||2

I Do not regularise w
(2)
0 , w (1)

j0 and w
(2)
0i . These components are

not considered by the regularization scheme.

In pratice, note that : ||w (1),∗||2 =
∑

ji ,j 6=0,i 6=0(w
(1)
ji)2.

Model Selection

The MLP has several hyperparameters :
I Nb of hidden layers
I Sizes of the hidden layers
I parameter λ
I nbcycle , ε
I ηt = γ

1+t

In general, they are selected by means of CROSS VALIDATION.

Advantages and drawbacks of Neural Networks
"feedforward"

I Pros
I Flexibility regarding the output : arbitrary number of classes,

etc..
I Fitting methos known since the mid 80’s
I Stochastic gradient descent is appropriate to deal with BIG

DATA
I GPU architectures can be used
I PLUG and PLAY : the same paradigm can be used successively

I Cons
I Non convex loss : no global minimum
I Implementing the gradient descent requires many adjustments

in practice
I No theoretical validity framework
I Ad hoc implementations - The ’art’ of neural nets

Deep Nets - Deep Learning

Image Y. Bengio

Learning deep neural networks

From 3 layers, one uses the term "deep learning", this type of
network is useful to analyze complex data such as textual data or
images.

The why of the use of several hidden layers ?
The fact that a NN with a single hidden layer is a universal
approximant does not mean that it provides the best
representation/approximation.

Learning deep neural networks

Despite the danger of overfitting,

two good reasons for considering deep neural nets

I advances in memory and computation (GPU)
I availability of massive databases (Imagenet, Fei-Fei, 2008)

Gradient backpropagation does not work well for deep nets (Bengio
et al. 2007 ; Erhan et al. 2009).
In absence of a good initialization, it often outputs bad local
minima.

Learning deep neural networks

Learning deep neural networks

Two major improvements
I Dropout
I Auto-encoders

Avoid overfitting deep nets by dropout 1/3

For very deep nets (>>2 layers) :

I During the learning stage, at each gradient modification : each
unit (neuron) is considered with probability p, meaning that
certain neurons are not present and are consequently not
corrected systematically.

I During the prediction (test stage), each unit is present with a
factor p applied to its weights.

Avoid overfitting deep nets by dropout 2/3

Interpretation :
When m neurons are involved, it is like one learns 2m sparse neural
nets and during the test, they are aggregated to form the neural
network used for prediction.
Neurons cannot adjust w.r.t. the others

Avoid overfitting deep nets by dropout 3/3

Deep Learning

Deep nets are often initialized by means of unsupervised learning,
through autoencoders or Restricted Boltzman Machines (RBM).
We will see how later...

Autoencoders

Autoencoders
An autoencoder is a network with one input layer, one or more
hidden layers and one output layer. This type of network aims at
providing an internal representation (the layer in the middle) by
learning how to predict the input from itself : x ≈ g(x).

Convolutional Neural Networks for Images

Y. Le Cun.

Visual cortex

Skip-gram model for word embedding

Mikolov et al. 2013.

References Ensemble Learning

I Y. Amit, D. Geman, and K. Wilder, Joint induction of shape
features and tree classifiers, IEEE Trans. Pattern Anal. Mach.
Intell., 19, 1300-1305, 1997.

I Breiman, L., Bagging predictors. Mach Learn (1996) 24 : 123.
I Y. Freund, R. Schapire, A decision-theoretic generalization of

on-line learning and an application to boosting. In Computational
Learning Theory, 1995.

I J. Friedman, T. Hastie and R. Tibshirani, Additive logistic
regression : a statistical view of boosting. Ann. Statist. Vol. 28, No.
2 (2000), 337-407.

I Breiman, L., Random Forests. Mach. Learn. (2001), Vol. 45, No. 1,
pp 5–32

I Tutorial : Ensemble Methods in Machine Learning. T.G. Dietterich,
available at :
http ://web.engr.oregonstate.edu/ tgd/publications/mcs-
ensembles.pdf

References - Réseaux de Neurones

I Le cours de Hugo Larochelle (youtube)

I Notes de cours IT6266, Université de Montréal, Equipe de Yoshua
Bengio.

I Learning Deep Architectures for AI, Yoshua Bengio, Foundations
Trends in Machine Learning, 2009

I Dropout : A simple way to prevent overfitting, Srivastava et al.
JMLR 2014

I Pattern Recognition and Machine Learning, C. Bishop, Springer,
2006.

I http://deeplearning.net/tutorial/ : pour tout document y
compris implémentations...

http://deeplearning.net/tutorial/

References - Neural Networks

I The online course of Hugo Larochelle (youtube)

I Lecture notes IT6266, Université de Montréal, Equipe de Yoshua
Bengio.

I Learning Deep Architectures for AI, Yoshua Bengio, Foundations
Trends in Machine Learning, 2009

I Dropout : A simple way to prevent overfitting, Srivastava et al.
JMLR 2014

I Pattern Recognition and Machine Learning, C. Bishop, Springer,
2006.

I http://deeplearning.net/tutorial/ : pour tout document y
compris implémentations...

http://deeplearning.net/tutorial/

Ensemble Learning
–

Bagging, Boosting and
Random Forests

Agenda

I Ensemble Learning - Consensus

I Bagging - Increase stability

I Boosting - "Best-off-the-shelf"

I "Random Forests"

Consensus methods
I Rather than fitting a classifier, combine the predictions of an

ensemble of classifiers

C1(X), . . . , CM(X).

Amit & Geman (1997)

I Majority vote :

sign

(
M∑

m=1

Cm(X)

)

I Variant - weighted majority vote : αi ≥ 0,
∑

i αi = 1

sign

(
M∑

m=1

αmCm(X)

)

I Extension to multiclass, to regression

I An old challenge : "ranking" and consensus (preference data)

Bagging - Boostrap
I Bootstrap aggregating technique - Breiman (1996)
I Applicable to any learning algorithm L
I From the training dataset Dn :

1. Generate independently B ≥ 1 bootstrap samples D∗(b)
n

(sampling with replacement in Dn)
2. For b : 1 to B, implement algorithm L based on D∗(b)

n ,
producing classifier C∗(b)

3. Aggregate the bootstrap predictions by calculating the
majority vote :

Cbag (X) = sign

(
B∑

b=1

C∗(b)(X)

)

I Variant : if C ∗(b)(X) = sign(f ∗(b)(X)),

C̃bag = sign

(
B∑

b=1

f ∗(b)(X)

)

Bagging - Comments

I Bagging can significatively reduce the variability of
unstable algorithms (e.g. decision trees)

I Variance reduction may lead to a lower prediction error

I In regression : fbag (x) = E[f ∗(x)] (expectation w.r.t. Dn)

E
[
(Y − f ∗(x))2

]
= E

[
(Y − fbag (x))

2
]

+ E
[
(fbag (x)− f ∗(x))2

]
≥ E

[
(Y − fbag (x))

2
]

I In classification :
Bagging a good classifier improves it, but ...
bagging a bad one may deteriorate it !

Boosting

I AdaBoost - Freund & Schapire (1995)

I The ingredient for ’slow learning’, resisting to the
overfitting phenomenon : a "weak" classification method
L

I Heuristic :
I apply L to weighted versions of the original training dataset

I increase the weights of the observations misclassified by the
current predictive rule

I aggregate the classifiers in a non uniform fashion
(a good predictor should not be built from a few outliers)

I AdaBoost surpasses its competitors when applied to many
benchmark datasets

I Statistical interpretation : five years later...

Boosting - General Scheme

Training	 sample	

	 	 	 	 …	

Weighted	 sample	

Weighted	 sample	

Weighted	 sample	

C1(X)	

C2(X)	

C3(X)	

CM(X)	

Sign(a1C1(X)+…+aMCM(X))	 Vo>ng	 scheme:	

The algorithm "Adaptive Boosting"

I Initialization : uniform weights, ωi = 1/n assigned to each
example (Xi ,Yi), 1 ≤ i ≤ n

I From m : 1 to M,
1. By means of algorithm L, fit a weak classifier Cm based on the

weighted labelled sample {(Xi ,Yi , ωi) : 1 ≤ i ≤ n}

2. Compute the weighted prediction error rate

errm =
n∑

i=1

ωi I{Yi 6= Cm(Xi)}

and am = log((1− errm)/errm)
3. Update the weights :

I ωi ← ωi exp (amI{Yi 6= C(Xi)})
I ωi ← ωi/

∑n
j=1 ωj

I Output : CBoost(X) = sign
(∑M

m=1 amCm(X)
)

AdaBoost resists the overfitting phenomenon !
I Typical weak classifiers : stumps (binary tree with depth 1)
I As M increases, the test error decreases and stabilizes

Practical Aspects

I How to implement L based on a weighted sample ?
I modify the criterion to be optimized explicitly (ex : CART,

SVM, k-NN, etc.)

I draw at random a training sample with distribution∑
i ωiδ(Xi ,Yi)

I When should we stop the iterations ?
I plot the test error as a function of M

I stop when it stabilises (but it is no more a test error...)

A statistical interpretation of Boosting

I Friedman, Hastie & Tibshirani (2000)

I Stagewise forward additive modelling

I Exponential loss : C (X) = sign(f (X))

Le(f) = E[exp(−Yf (X))]

I Optimal solution :

f ∗(X) =
1
2
log
(

η(X)

1− η(X)

)

Forward stagewise additive modelling
I Heuristic : refine the current predictive rule fm−1(x) by adding
αmCm(x), with αm ∈ R and Cm(x) ∈ {−1, +1}

I How to choose αm and Cm(x) so as to minimise the
exponential version of the empirical risk ?

arg min
α, C

n∑
i=1

exp (−Yi (fm−1(Xi) + αC (Xi))) =?

I Set ωi = exp(−Yi fm−1(Xi)), the empirical risk then writes :
n∑

i=1

ωi exp (−YiαC (Xi))

I For any α > 0, the classifier with minimum risk is also that
which minimises the weighted risk :

n∑
i=1

ωi I{Yi 6= C (Xi)}

Forward stagewise additive modelling

I Let Cm(X) be the solution to this weighted classification
problem :

errm =
n∑

i=1

ωi I{Yi 6= Cm(Xi)}

I It remains to minimize in α :

eαerrm + e−α(1− errm),

and get αm = (1/2) · log((1− errm)/errm)

I Many variants : other losses, weight thresholding, etc.

Aggregation produces smooth decision regions

Random Forest

I Ingredients : bagging + randomization

I Randomize the collection of predictive variables (i.e. X ’s
components) : before splitting the nodes of a bootstrap
decision tree

I Typical weak classifier : decision tree with small depth

I Aggregation preserves consistency...
but no theoretical explanation for the observed performance !

I Heuristic : randomization (of the predictive variables)
"enriches" the rule

I Randomization of the data when massive, to scale up the
algorithms

Linear separation

Definition
Let x ∈ Rp

f (x) = signe(wTx + b)
The equation : wTx + b = 0 defines an hyperplane in the Euclidean
space Rp

Example : training data in 3D and linear separator

Case of data linearly separable

Example in 2D : what line should be chosen ?

Margin criterion

Margin criterion

Geometrical notion of margin

I To separate the data, consider a triplet of hyperplanes :
I H : wTx + b = 0, H1 : wTx + b = 1, H−1 : wTx + b = −1

I The geometrical margin, ρ(w) is the smallest distance between
the data and the hyperplane H, here half of the distance
between H1 and H−1

I A simple calculation yields : ρ(w) = 1
||w|| .

New cost function to be optimized

How to determine w and b ?
I Maximize the margin ρ(w) while separating the data on both

sides of H1 and H−1

I Separate the blue data (yi = 1) : wTxi + b ≥ 1
I Separate the red data (yi = −1) : wTxi + b ≤ −1

Linear SVM : separable case

Optimisation in the primal space

minimise
w,b

1
2
‖w‖2

under the constraint yi (wTxi + b) ≥ 1, i = 1, . . . , n.

Reference
Boser, B. E. ; Guyon, I. M. ; Vapnik, V. N. (1992). "A training
algorithm for optimal margin classifiers". Proceedings of the fifth
annual workshop on Computational learning theory - COLT ’92. p.
144.

Quadratic optimization program with linear constraints

Typical problem (notations are changing !)

Quadratic optimization program with linear constraints

Typical problem :
minx f (x)
s.c. g(x) ≤ 0

I Her, g(x) linear
I f strictly convex

1. Lagrangian : J(x , λ) = f (x) + λg(x), λ ≥ 0

Quadratic optimization program with linear constraints

Lagrangian

L(w, b, α) =
1
2
||w||2 +

∑
i

αi (1− yi (wTxi + b))

∀i , αi ≥ 0

Karush-Kuhn-Tucker conditions

At the extremum, one has

∇wL(w) = w −
n∑

i=1

αiyixi = 0

∇bL(b) = −
n∑

i=1

αiyi = 0

∀i , αi ≥ 0
∀i , αi [1− yi (wTxi + b)] = 0

Obtaining the αi ’s : solving in the dual space

L(α) =
∑
i

αi −
1
2

∑
i ,j

αiαjyiyj(xTi xj)

I Maximize L under the constraints αi ≥ 0 and∑
i αiyi = 0, ∀i = 1, . . . , n

I Use a quadratic solver

Linear SVM or Optimal Margin Hyperplane

Suppose that the Lagrange multipliers αi have been determined :

Equation of a linear SVM

f (x) = signe(
n∑

i=1

αiyixTi x + b)

To predict the label a pointx, the classifier combines linearly the
labels yi of the support points with weights of type αixTi x
depending on the similarity between x and the support data in the
inner product (cosine similarity).

"Support" Vectors

The training data points xi
such that αi 6= 0 are on one hyperplane or the other, H1 or H−1.
Only these data points, referred to as support vectors are explicitely
involved in the definition of w =

∑n
i=1 αiyixi

NB : b is obtained by choosing a support vector (αi 6= 0)

Realistic case : linear SVM for non linearly separable data

Introduce a slack variable ξi for each data point :

Problem in the primal space

min
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi

under the constraints yi (wTxi + b) ≥ 1− ξi i = 1, . . . , n.
ξi ≥ 0 i = 1, . . . , n.

Realistic case : linear SVM for non linearly separable data

Notion of soft margin

Realistic case : linear SVM for non linearly separable data

Problem in the dual space

max
α

∑
i

αi −
1
2

∑
i ,j

αiαjyiyjxTi xj

under the constraints 0 ≤ αi ≤ C i = 1, . . . , n.∑
i

αiyi i = 1, . . . , n.

Karush-Kuhn-Tucker (KKT) conditions

Let α∗ be the solution of the dual problem :

∀i , [yi fw∗,b∗ (xi)− 1 + ξ∗i] ≤ 0 (19)

∀i , α∗
i ≥ 0 (20)

∀i , α∗
i [yi fw∗,b∗ (xi)− 1 + ξ∗i] = 0 (21)

∀i , µ∗i ≥ 0 (22)

∀i , µ∗i ξ
∗
i = 0 (23)

∀i , α∗
i + µ∗i = C (24)

∀i , ξ∗i ≥ 0 (25)

w∗ =
∑
i

α∗
i yixi (26)

∑
i

α∗
i yi = 0 (27)

(28)

Different situations

Let α∗ be the solution of the dual problem :
I if α∗i = 0, then µ∗i = C > 0 and thus, ξ∗i = 0 : xi is well

classified
I if 0 < α∗i < C , then µ∗i > 0 and thus, ξ∗i = 0 : xi is such that :

yi f (xi) = 1
I if α∗i = C , then µ∗i = 0, ξ∗i = 1− yi fw∗,b∗(xi)

NB : one computes b∗ by choosing i such that 0 < α∗i < C

Realistic case : linear SVM for non linearly separable data

A few remarks are in order
I certain support vectorsare thus on the ’wrong sides’ of the

hyperplanes H1 or H−1

I C is an hyperparameter that control the trade-off between
model complexity (nb of support vectors here) and
goodness-of-fit.

SVM : regularization approach

Optimization in the primal space

min
w,b

n∑
i=1

(1− yi (wTxi + b))+ + λ
1
2
‖w‖2

With : (z)+ = max(0, z)
f (x) = signe(h(x))
Cost function : L(x, y , h(x)) = (1− yh(x))+
yh(x) is called ’classifier’s margin’

Support Vector Machine : the non linear case

Preliminary remark

The problem of finding the hyperplane with optimal margin involves
the training data through inner products only.

max
α

∑
i

αi −
1
2

∑
i ,j

αiαjyiyjxTi xj

under the constraints 0 ≤ αi ≤ C i = 1, . . . , n.∑
i

αiyi i = 1, . . . , n.

Remark 1 : learning/training

If the data are transformed by means of a function ϕ (non linear)
and if the inner products ϕ(xi)Tϕ(xj) can be computed, then a
non linear separating function can be learned.

max
α

∑
i

αi −
1
2

∑
i ,j

αiαjyiyjϕ(xi)Tϕ(xj)

under the constraints 0 ≤ αi ≤ C i = 1, . . . , n.∑
i

αiyi i = 1, . . . , n.

To predict the label of a new data point x, only ϕ(x)Tϕ(xi) is
required.

The kernel trick

If one replaces xTi xj by its image by a function k : k(xi , xj) such
that there exist a feature space F and a feature map ϕ : X → F
and ∀(x, x′) ∈ X , k(x, x′) = ϕ(x)Tϕ(x′), one may apply then the
same optimization algorithm (solving in the dual) and obtain :
f (x) = signe(

∑n
i=1 αiyik(xi , x) + b)

Such functions do exist and are called kernels.

Kernel trick and feature map 1/2

Kernel trick and feature map 2/2

Function h of the type :
h(x) =

∑n
i=1 βiϕ(x)Tϕ(xi) =

∑n
i=1 βik(x , xi),

with k : X × X → R a positive definite kernel.

Kernel trick and feature map 2/2

Function h of the type :
h(x) =

∑n
i=1 βiϕ(x)Tϕ(xi) =

∑n
i=1 βik(x , xi),

with k : X × X → R a positive definite kernel.

Kernels

Definition
Let X be an ensemble. Let k : X × X → R, a symmetric function.
The function k is called a positive kernel iff for any set
{x1, . . . , xm} in X and any column vector c in Rm,
cTKc =

∑m
i ,j=1 cicjk(xi , xj) ≥ 0

Moore-Aronzajn’s theorem

Moore-Aronzajn
Let K be a positive definite kernel. Then, there exists a unique
Hilbert space F for which k is an auto-reproducing kernel :
∀x ∈ X , 〈f (·), k(·, x)〉F = f (x)
In particular : 〈k(·, x), k(·, x ′)〉F = k(x , x ′)

NB :It means that one can always choose ϕ(x) = k(·, x)

Moore-Aronzajn’s theorem

Moore-Aronzajn
Let K be a positive definite kernel. Then, there exists a unique
Hilbert space F for which k is an auto-reproducing kernel :
∀x ∈ X , 〈f (·), k(·, x)〉F = f (x)
In particular : 〈k(·, x), k(·, x ′)〉F = k(x , x ′)

NB :It means that one can always choose ϕ(x) = k(·, x)

Kernels

Kernels between vectors
∀x, x′ ∈ Rp

I Linear : k(x, x′) = xTx′

I Polynomial : k(x, x′) = (xTx′ + c)d

I Gaussian : k(x, x′) = exp(−γ||x− x′||2)

Support Vector Machine : non linear separation with
Gaussian kernel

Example : polynomial kernel

Example : polynomial kernel

Kernel trick
Notice that ϕ(x1)Tϕ(x′) can be computed without working in R3

Define k(x, x′) = ϕ(x)Tϕ(x′) = (xTx′)2

Construction of a kernel

I Combine known kernels
I Specific kernels for certain types of data :

I Structured data : ensembles, graphs, trees, sequences, . . .
I Unstructured data with an underlying structure : text, images,

documents, signals, biological objects
I Selection of a kernel :

I Hyperparameter learning : Chapelle et al. 2002
I Multiple Kernel Learning : given k1, . . . , km, learn a convex

combination
∑

i βiki (see SimpleMKL Rakotomamonjy et al.
2008, unifying view in Kloft et al. 2010)

